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Summary: To test the hypothesis H0 : f = ψ that an unknown densityf is equal to a specified
one,ψ, an estimatêf of f is compared withψ. The total variation distance||f̂ − ψ||1 is used as
test statistic.

The density estimatêf considered is a peculiar one. A table of critical values is provided, this
table is applicable for arbitraryψ.

Relations with other methods, Neyman’s smooth tests in particular, are discussed and power
comparisons are performed. In certain situations, our test is recommendable. An example from
practice is provided.

AMS 2000 subject classification: 62G10, 62H15
Key words and phrases: Goodness of fit, Neyman smooth tests,χ2 test, power analysis



2 Albers – Schaafsma

1 Introduction
After Karl Pearson’s breakthrough paper (1900) about hisχ2 test, many improvements
were suggested. Neyman (1937), for example, considered continuous analogues of Pear-
son’s problem. We concentrate the attention on such analogue.

Problem. Given are the ordered outcomesx[1] < x[2] < . . . < x[n] of an indepen-
dent random sampleX1, . . . , Xn from a probability distribution onR with a ‘smooth’
densityf , not unlike a given densityψ = Ψ′. Required is a statement about the truth or
falsity of the hypothesisH0: f = ψ of equality.

The statistician who has to solve this problem may be appalled by the abundance
of proposals. Pearson’s test depends on a classification of the data. Neyman’s smooth
test (1937) (see Section 6) requires that one specifies an orthonormal basis for anL2

space and restricts the attention to the firstk + 1 basis vectors. The Kolmogorov test
(Kolmogorov, 1933) is yet another possibility. In the past decade, pre-test procedures
(cf. Albers et al., 2000, 2001) and data-driven tests (cf. Ledwina, 1994, Kallenberg and
Ledwina, 1995, Inglot and Ledwina, 1996) were developed.

We start from the idea that it is natural to choose some estimatef̂ of f and to compare
this estimate with the postulated densityψ by rejecting H0 if f̂ andψ are ‘too different’.
This idea, dating back to Bickel and Rosenblatt (1973), is commonly used in goodness-
of-fit theory (see Hart (1997) for a summary). In our construction, H0 will be rejected if
the area||f̂ − ψ||1 =

∫ |f̂(x) − ψ(x)|dx between the graph ofψ and that off̂ is suffi-
ciently large. The density estimatêf (see Albers and Schaafsma, 2003) we recommend
will be constructed in Section 2. It is not a kernel estimate in the usual sense. The null
distribution of the test statistic is studied to determine P-values and to construct a table
of critical values. This table will be reported in Section 5 which, together with Section
2, contains the essence of this paper. (Sections 3 and 4 provide elaborations for special
cases useful in making interpretations.)

Our estimatêf depends on the sample sizen and on the degreem of a specific poly-
nomial. That is why the notation̂f = f

(m)
n is used, together witht(m)

n = ||f (m)
n − ψ||1

for the outcome of the test statisticT (m)
n . In Section 8 we shall recommend choice of

m = bn1/3c. The P-valueP0(T
(m)
n ≥ t

(m)
n ) = α(x) will be used as degree of belief

in H0. HereP0 refers to the distribution ofT (m)
n under H0. If H0 is rejected forα(x)

smaller than some nominal level, then one is acting according to the general Neyman-
Pearson theory. In practice, this is often fairly natural.

If H0 is maintained then one will usually proceed under the assumption thatf = ψ.
If H0 is rejected then one will sometimes proceed on the basis of an estimate off . We do
not recommend to use the densityfm

n with m = bn1/3c which we use in testing H0, but
the densityf (m)

n with m = bn1/2c (as outlined in Albers and Schaafsma (2003)). (The
use of the P-value as ‘degree of belief’ is considerably questionable from a foundational
point of view. See, e.g. Saloḿe et al. (1999)).

Applying the probability transformxi → ui = Ψ(xi) we obtain

u[0] = 0, u[i] = Ψ(x[i]) (i = 1, . . . , n), u[n+1] = 1.

Note thatΨ(Xi) has distribution functionG = F ◦Ψ−1, quantile functionB = G−1 =
Ψ ◦ F−1, density functiong(u) = f(Ψ−1(u))/ψ(u), quantile densityb(p) = B′(p),
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3.89 7.44 8.65 9.40 10.00 11.27 11.52 14.23 15.52 15.63
16.39 17.33 18.37 21.12 21.76 22.54 23.29 23.36 24.17 24.57

Table 1.1Data of the example considered in Section 1

etcetera. The hypothesis H0: f = ψ is equivalent to H0: g ≡ 1 and to H0: b ≡ 1. It is
interesting to note that the distribution of the test statistic||f (m)

n − ψ||1 does not depend
on the densityψ to be tested. If applications are made then the density estimatef

(m)
n is

displayed together with the null densityψ.
Example. Throughout this manuscript, we shall work with the following theoret-

ical example (a concrete application is considered in Section 10). Consider the data
x[1], . . . , x[20] given in Table 1.1. The information is provided that the underlying den-
sity f is such that the support{x; f(x) > 0} = (0, 25). We want to test H0: f = ψ
whereψ is the density of the uniform distribution of(0, 25). Figure 1.1 presents graphs
of the density estimatesf (m)

20 to be specified in Section 2 (m = 1, 2, 3, 4). To test H0:

f = ψ, we consider either one of the shadedL1 areas||f (m)
20 − ψ||1 (m = 1, 2, 3, 4)

which are.141, .212, .252, and.277. The data in Table 1.1 have actually been obtained
by sampling from the distribution on(0, 25) with densityf(x) = x/625 + 1/50. The
density estimatef (2)

20 is closer tof thanf
(1)
20 , andf

(4)
20 is even closer, whilst in this exam-

ple,f (3)
20 is the ‘best estimate’ off . Table 5.1 (properly extended) provides the P-values

.029, .028, .032, and .034 if one uses the shaded areas||f (m)
20 − ψ||1 (m = 1, 2, 3, 4) to

test H0. These P-values are less different than one might expect. The reason is that the
underlying test statisticsT (m)

20 are strongly correlated (see Section 4).
Note that Karl Pearson’s test requires the specification of the numberk + 1 of cells

such that theχ2
k distribution applies. If we takek = 1, then we arrive at the two-sided

sign test which, for our data, providesP = .263. If we takek = 2, then we have to work
with the exact null distribution of Pearson’s statistic. Computations providedP = .14.

An elementary discussion.Confronted by the differences between these P-values,
the reader will, hopefully, appreciate the following preparation to more sophisticated
discussions Sections 7, 8, and 9 (the quick reader might continue with the last sentence
of this section). The data of Table 1.1 were obtained by sampling from the distribution
indicated because this allows computation of powers using formulas from elementary
analysis. The first step is to apply the probability transform wherexi is replaced by
ui = Ψ(xi) = xi/25. The true distribution ofUi = Ψ(Xi) has distribution function
G = F ◦ Ψ−1 whereG(u) = F (25u) andg(u) = f(Ψ−1(u))/ψ(u) = 25f(25u) =
1
2 + u. We concentrate the attention on the formulation H0 : g ≡ 1 or, equivalently,
H0 : b ≡ 1, whereb is the quantile density.

If a simple alternative is considered, e.g. H1: g(u) = 2u, then we can apply the
Neyman-Pearson Fundamental Lemma. For this special alternative H1 we reject H0 if∏n

i=1 ui is sufficiently large or, equivalently, if−2
∑

log(ui) is sufficiently small. It
is well known that the distribution of−2

∑
log(Ui) is χ2

2n if H0 is true. The P-value
P

(
χ2

2n ≤ −2
∑

log(ui)
)

= P
(
χ2

40 ≤ 21.62
)

thus obtained, for the example, is equal to
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Figure 1.1 Density functions for the data of Table 1.1, form = 1 (left) to m = 4 (right).

Shaded areas are the test statisticst
(m)
20 . (In practice, we recommend to usem = b201/3c = 2

to test H0 andm = b201/3c = 4 to estimatef .)

.0078. Hence H0 is rejected at all levels of significanceα ≥ .0078.

In practice we do not know which simple alternative to choose. That is why we study
the omnibus test based on some test statisticT

(m)
n with outcomet(m)

n = ||f (m)
n − ψ||1.

In the present context,||f (1)
20 − ψ||1 happens to coincide with|ū− 1/2| = .141 because

ū = 20−1
∑20

i=1 ui = .641. It is of interest for later interpretations to note that, due to

chance fluctuations, this outcome is considerably larger than the value
∫ 1

0
u(u+ 1

2 ) du =
.583 to be expected if one samples from the true densityf .

Elementary power computations (for the true densityf , and the corresponding den-
sity g) were made for the tests based on the test statistics with outcomes

∏
ui,

∑
ui,∏

(ui + 1
2 ), and

∑
sign(ui − 1

2 ) or, equivalently, for those with outcomes
∑

h(ui)
with h : (0, 1) → R defined byh1(u) = log u, h2(u) = u, h3(u) = log(u + 1

2 ),
andh4(u) = sign(u − 1

2 ), respectively. If one rejects H0: f = ψ or, equivalently,
H0: g ≡ 1 if

∑
h(ui) is sufficiently large, then one is using a level-α test which is

Uniformly Most Powerful (UMP) level-α for testing H0 against all alternatives of the
form g(θ) = c(θ)exp(θh(u)) with θ > 0. The maximum power in the true density
gθ(u) = 1

2 +u is obviously achieved ifh3(u) = log( 1
2 +u) is used. Using the asymptotic

normality of
∑

h(Ui), both under H0: g ≡ 1 and under H1: g(u) = 1
2 + u, approximate

powers can be computed analytically. Usingµ = E0(h(U)) andσ2 = Var0(h(U)) to de-
note mean and variance ofh(U) under H0, andµ′ = E1(h(U)) to denote the mean under
H1, the power of the one-sided level-α test is approximately given by1−Φ(zα−δ) where
Φ is the distribution function of the standard-normal distribution,zα = Φ−1(1−α), and
δ = n1/2(µ′ − µ)/σ. For h = hi andn = 20 as in Table 1.1, we obtainδi ≈ 1.12,
1.29, 1.28, and1.12 respectively. Powers1 − Φ(zα − δi) in the true distribution are
approximately equal to1 − Φ(1.645 − δi) = .30, .36, .36, and.30 if α = .05 and the
one-sided level-α tests are used. They are about1 − Φ(1.960 − δi) = .20, .25, .25,
and.20 if the two-sides size-α tests are used (with equal tail probabilities). That H0 was
rejected at all levels of significanceα > .0078 if h1 is used and at all levelsα > .029 if
h2 or h3 is used is more surprising than the non-occurrence of statistical significance if
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i j ρij

1 2 1
2

√
3 = .866

1 3 −π2+12−3(log 2)2−6Li2(− 1
2 )

6
√

4−3(log 3)2
= .915

1 4 log 2 = .693

2 3 4−3 log(3)
2

√
3

4−3(log 3)2 = .990

2 4 1
2

√
3 = .866

3 4
3
2 log 3−2 log 2√

1− 3
4 (log 3)2

= .850

Table 1.2 Correlationsρi,j for the four types of test statistic. (The computationρ13 usesR 1
0 log(u) log(u + 1

2
) du = − 1

2
Li2(− 1

2
) + 2− 1

12
π2− (log

√
2)2− log

√
27+ log 2 (cf.

Lewin, 1991) whereLi2(z) =
R 0

z t−1 log(1− t) dt is the second polylogarithmic function).

Pearson’sχ2-test is used. (Due to chance fluctuations, the sample reported in Table 1.1
is such that, as already observed,ū = .641 is considerably, but not significantly, larger
thanE h2(U) = .583.)

A peculiar drawback of the two-sided tests based onh1, h2, h3, andh4 (either with
equal tail probabilities under H0 or with adapted values such that unbiasedness is achieved
for all alternatives of the formgθ(u) = c(θ)exp(θh(u)) with θ 6= 0) is that these level-α
tests arenot unbiased size-α for testing H0 against the omnibus alternative A: densities
f 6= ψ exist beyond the exponential family such that the probability of rejecting H0 is
less thanα if this density is the true one. (This drawback is not restricted to tests of the
form indicated, see the end of Section 8.) Finally, we note that the correlations computed
under H0 and presented in Table 1.2 indicate that the tests based onh2 andh3 are almost
equivalent whereas, in spite ofδ1 ≈ δ4, the tests based onh1 andh4 are considerably
different.

The intuitions following from these computations are in line with the discussions to
be presented in Sections 7,8, and 9.

2 Specification of the proposed test statistic
To test H0: f = ψ, consider the area

||f̂ − ψ||1 = ||ĝ − 1||1 = ||b̂− 1||1

between the graph ofψ and that off̂(= f
(m)
n ). Note that the first equality follows

from the fact that theL1 norm corresponds to the total variation norm which is invariant
under bimeasurable bijections. (This invariance is the main reason why we consider the
L1 norm as more ‘natural’ than, e.g., the L2 norm which is behind the smooth tests of
Neyman, that of Pearson included, see Section 8.) The second equality can be established
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by noting that||b− 1||1 is equal to
∫ 1

0

|B′(p)− 1| dp =
∫ 1

0

∣∣(G−1)′(p)− 1
∣∣ dp

=
∫ 1

0

∣∣∣∣
1

g(G−1(p))
− 1

∣∣∣∣ dp

=
∫ 1

0

∣∣∣ 1
g(u) − 1

∣∣∣ dG(u)

= ||g − 1||1.
To define the special estimatef

(m)
n , we start from the Bernstein polynomial approxi-

mation

Bn(p) =
n+1∑

i=0

u[i]

(
n + 1

i

)
pi(1− p)n+1−i

of degreen + 1 to the empirical quantile function (see Muñoz Perez and Fernández Pa-
laćın, 1987, De Bruin et al., 1999). This special estimateBn(p) of B(p) is attractive
because the derivative

bn(p) =
n∑

i=0

(u[i+1] − u[i])
(

n

i

)
(n + 1)pi(1− p)n−i

is a true probability density function: it is positive and integrates up to one. By numer-
ical transformation (viaFn = B−1

n ◦ Ψ), an estimatefn of f is obtained. To increase
performance, Albers and Schaafsma (2003) replacedbn by a smoothed versionb(m)

n (the
degree ofBn is lowered fromn + 1 to m + 1, and, hence, that ofbn from n to m). In
the density estimation case it was suggested to takem = bn1/2c. In the present context
of testing H0: b = 1 some further smoothing is indicated. We recommend a choice of
m = bn1/3c if an omnibus test is required. For motivation behind our recommendation,
see Sections 8 and 9.

The idea to use some quantile-function estimate in hypothesis testing is not new, and
dates back to Parzen (1979). LaRiccia (1991), for example, gives an approach using such
quantile function to test H:F ∈ F whereF is some class of distribution functions. We,
however, are fascinated by the crucial problem of testing the simple (i.e. not composite)
hypothesis H0: f = ψ. (Our test, withm = bn1/3c, is not recommendable ifψ is
obtained by using the data to specify some particularΨ ∈ F ; the rationale behind our
fascination is primary ‘philosophical’: we are interested in ‘the limits of reason’, see
Section 9 and (Albers, 2003).)

The definition ofB(m)
n (and, hence, ofb(m)

n , g
(m)
n , f

(m)
n , etcetera) is as follows.

Let Bm(p|u1, . . . , um) correspond toBn(p) if n = m and the outcomesu1, . . . , um

(unordered) have to be evaluated. Define theU -statistic

B(m)
n (p) =

(
n

m

)−1 ∑

1≤α1<...<αm≤n

Bm(p|uα1 , . . . , uαm).
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This can be rewritten as theL-statistic

B(m)
n (p) = pm+1 +

m∑

j=1

(
m + 1

j

)
pj(1− p)m+1−j

n−m+j∑

i=j

(
i−1
j−1

)(
n−i
m−j

)
(

n
m

) u[i].

Differentiation providesb(m)
n as a convex combination of densities of Beta(i+1,m+1−i)

distributions(i = 0, . . . , m). (See the beginning of Section 6 for explicit expressions.)
Note thatB(m)

n is the distribution function of a probability distribution on(0, 1) (with
a density) and that, hence,F

(m)
n = (B(m)

n )−1 ◦ Ψ is such that its derivativêf = f
(m)
n

is a genuine probability density function: it is nonnegative everywhere and integrates
up to one. In practice, computations ofb

(m)
n and off (m)

n are performed via numerical
differentiation ofB(m)

n and ofF (m)
n . (In Albers (2003, Chapter 4) results can be found

about the asymptotic distribution ofb(m)
n andf

(m)
n if m = n; for other values ofm,

suggestions are made.)
Though we are primarily interested in usingT

(m)
n with outcome

t(m)
n = ||f (m)

n − ψ||1 = ||b(m)
n − 1||1

as test statistic (and withm = bn1/3c)), some other test statistics could be discussed as
well, e.g. that based on the Kolmogorov distance with outcome

t̃(m)
n = ||F (m)

n −Ψ||∞ = ||B(m)
n − I||∞

whereI(p) = p (see the end of Section 3 for an elaboration in the casem = 1). Note that
t̃
(m)
n is an analogue of the test statistic of Kolmogorov’s test (see Section 7). The quick

reader is invited to continue with Section 5. The Sections 3 and 4 are about the special
casesm = 1 andm = 2. Although of limited practical interest, they do provide a useful
basis for interpretations, both form = 1, 2 as for largerm.

3 The casem = 1

Ignoring the degenerate casem = 0 where the smoothing is so strong thatB
(0)
n (p) = p

and, hence,f (0)
n equalsψ and does not depend on the data, we start withm = 1 where

B(1)
n (p) = (1− ū)p2 + ū(2p− p2)

is a convex combination of the quantile function2p− p2 of the Beta(1, 1/2) distribution
and the quantile functionp2 of the Beta(1/2, 1) distribution. (Note that this does not
imply that the inverseG(1)

n of B
(1)
n is a convex combination of Beta distributions.) For

ū = 1/2 the uniform distribution appears.
Theoretical intermezzo. It is of some theoretical interest to consider the quantile

functionsBθ(p) = (1 − θ)p2 + θ(2p − p2) for arbitrary θ ∈ [0, 1]. HereB
(1)
n (p)

corresponds toBθ(p) if θ = ū. An elementary analysis provides

Gθ(u) =





(2θ − 1)−1(θ −
√

θ2 − (2θ − 1)u) if θ > 1/2
u if θ = 1/2
(1− 2θ)−1(−θ +

√
θ2 + (1− 2θ)u) if θ < 1/2
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with density

gθ(u) =
1

2
√

θ2 + (1− 2θ)u
(0 < u < 1)

(for θ = 0 the distribution function of Beta(1, 1/2) is obtained, forθ = 1 that of
Beta(1/2, 1)). It is possible to extend this family{gθ|θ ∈ [0, 1]} of densities by al-
lowing arbitraryθ ∈ R. This extension, however, serves no practical purpose because we
are interested in the testing of H0: g ≡ 1 and, hence, in obtaining good power properties
for densities ‘not too far fromg1/2’. If Xθ is a random variable with density functiongθ,

then (for arbitraryθ ∈ R) E Xθ =
∫ 1

0
ugθ(u) du = 1

3θ + 1
3 . In a parametric approach to

the testing of H0 : g ≡ 1, the attention might be concentrated on level-α tests which are
‘optimal’ if g belongs to the parametric family{gθ|θ ∈ Θ} of densities just considered.
The locally most powerful unbiased size-α test rejects H0: θ = 1

2 if ū is sufficiently far
from 1

2 . The most stringent size-α test may be obtained by rejecting for large values of∏n
i=1(gθ(ui) + g1−θ(ui)) with θ chosen such that the shortcoming is maximum. This

will correspond to the most stringent somewhere most powerful unbiased size-α test.
Elaborations are not presented because, just like the tests studied at the end of Section
1 (for exponential subalternatives), these ‘optimal’ tests (for alternatives of the formgθ)
will fail to be unbiased size-α for testing H0: g ≡ 1 against the omnibus alternative A:
g 6= 1. Alternativesg exist (beyond the one-parameter subalternatives), where the power
is substantially smaller than the nominal level of significanceα (we return to this at the
end of Section 8). (End of intermezzo.)

In Section 2 the test statisticsT (m)
n andT̃

(m)
n were defined. Form = 1 we have

t(1)n = ||b(1)
n − 1||1

= |2ū− 1|
∫ 1

0

|1− 2p| dp

= |ū− 1
2 |

and

t̃(1)n = sup
p

∣∣∣B(1)
n (p)− p

∣∣∣

= sup
p
|2ū− 1|p(1− p)

= 1
2 |ū− 1

2 |.

Conclusion. If one choosesm = 1, then bothT
(m)
n and T̃

(m)
n lead to using the

deviation ofū from 1/2 as test statistic. The corresponding P-value is, approximately,
given byP(χ2

1 ≤ 12(ū − 1
2 )2) = 2Φ(−√12n|ū − 1

2 |). This test corresponds to that of
Neyman (1937) if a polynomial of degree 1 is used. A drawback is that the test is not
unbiased size-α for testing H0: f = ψ against the omnibus alternative A:f 6= ψ.
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4 The casem = 2

The exact equivalence with a Neyman smooth test vanishes ifm = 2 because then we
have that

B(2)
n (p) = p3 +

3p(1− p)(
n
2

)
n∑

i=1

(n− i + p(2i− n− 1))u[i]

= p + 3p(1− p)ε + 3p(1− p)(p− 1
2 )δ

whereε = ū− 1
2 is based on the sample meanū and

δ =
1

n(n− 1)

n∑

i=1

n∑

j=1

|ui − uj | − 1
3

is based on Gini’s mean difference

1
n(n− 1)

n∑

i=1

n∑

j=1

|ui − uj | = 2
n(n− 1)

n∑

i=1

(2i− n− 1)u[i].

Note that both the sample meanū and Gini’s mean difference areU -statistics as well as
L-statistics. We introducedε andδ because, under H0,

L n1/2

(
ε
δ

)
−→ N2

((
0
0

)
,

[
σ2 0
0 τ2

])
,

with σ2 = 1/12 andτ2 = 1/45, we exactly haveVar (ε) = n−1σ2 andCov (ε, δ) = 0
(Nair, 1936). Locke and Spurrier (1978) suggests that instead ofū andg other statistics
(e.g.

∑
(ui − 1

2 )2/n, and−∑
log(ui(1 − ui))) could equally well be used to provide

goodness-of-fit tests for uniformity. See Section 8 for further discussion (and note that
the examples just considered are of the same form as those already considered at the end
of Section 1, namely withh(u) = (u− 1

2 )2 andh(u) = log(u− 1
2 )− log u, respectively).

It follows from the limit theorem just established that, under H0,

L n
(
12ε2 + 45δ2

) → χ2
2 = Gamma(1, 1

2 ),

and that, hence, using any positive multiple of12ε2 + 45δ2 as test statistic, the approxi-
mate P-value

P(1)
2 = P(χ2

2 ≥ n(12ε2 + 45δ2)) = exp(−n(3ε2 + 11.25δ2))

is obtained. We, however, prefer an ‘exact’ approach based on the test statisticT
(2)
n with

outcome

t(2)n = ||b(2)
n − 1||1 = 3

∫ 1

0

∣∣−3δp2 + (3δ − 2ε)p + (ε− 1
2δ)

∣∣ dp

In practiceε andδ are known, and the numerical computation of this integral is straight-
forward. Deriving distributional properties ofT (2)

n for givenε andδ is straightforward
as well.
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α = 10%
n m

2 3 4 5 6 7 8 9 10
10 .227 .278 .314 .344 .371 .397 .421 .443 .466
20 .161 .196 .221 .240 .258 .272 .286 .299 .311
50 .102 .123 .138 .151 .161 .170 .178 .185 .191

100 .072 .087 .098 .106 .113 .119 .125 .130 .135
α = 5%

n m
2 3 4 5 6 7 8 9 10

10 .269 .328 .368 .401 .427 .456 .479 .501 .525
20 .191 .231 .260 .281 .300 .315 .329 .342 .355
50 .121 .146 .164 .177 .188 .197 .205 .213 .220

100 .085 .103 .115 .125 .132 .139 .145 .150 .155
α = 1%

n m
2 3 4 5 6 7 8 9 10

10 .347 .423 .473 .512 .548 .575 .600 .624 .643
20 .249 .302 .338 .364 .387 .405 .418 .433 .445
50 .158 .191 .212 .231 .242 .254 .263 .268 .278

100 .112 .134 .150 .162 .170 .178 .184 .191 .196

Table 5.1Some critical values form = 2, . . . , 10. For a more extensive table, seehttp://-
mcs.open.ac.uk/cja235 .

The exact distribution ofT (2)
n , underH0 has been studied using simulation experi-

ments. Table 5.1 provides critical valuest
(2)
n,α, for α = .10, .05, and.01.

Conclusion.With respect to the example of Section 1 we haveε = .141, δ = −.038.
The χ2

2-test discussed in this section provides the approximate P-valueP(1)
2 = .023.

Using (an extension of) Table 5.1, it follows fromt(2)n = .212 thatP2 = .029.

5 The general case
The results of the previous two sections can be generalized to arbitrarym ≤ n. In
Section 4 exact representations were given in terms of the sample mean and Gini’s mean
difference. Form ≥ 3 theoretical results can still be derived but they are too complicated
to be of interest. In practice, the numerical computation oft

(m)
n = ||f (m)

n − ψ||1 =
||b(m)

n − 1||1 and obtaining distributional properties ofT
(m)
n , for a given sample, are

straightforward. To test H0: f = ψ, one can use the simulation-based critical values
reported in Table 5.1. (We recommend the choicem = bn1/3c.)

The figures in Table 5.1 were obtained as follows. Given some choice(m,n), a
sample of sizen was drawn from the standard uniform distribution providing an outcome
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t
(m)
n of the test statisticT (m)

n . This process was repeated 100 000 times. Percentiles taken
from the empirical distribution ofT (m)

n were reported.

6 Relation with Neyman’s smooth tests

As indicated at the end of Section 2, the quantile density estimateb
(m)
n = (B(m)

n )′ is
a positivepolynomial function on[0, 1]; it is a convexcombination of the densities of
Beta(i+1,m+1− i) distributions(i = 0, . . . ,m). This representation is very fortunate,
because it implies that theb(m)

n and, hence, the density estimatesg
(m)
n and f

(m)
n are

genuine probability densities. Note that the weight of the density(m + 1)
(
m
i

)
pi(1 −

p)m−1 of Beta(i + 1,m + 1− i) can be obtained by elaborating on

b(m)
n =

(
n

m

)−1 ∑

1≤α1<...<αm≤n

b(m)
m (p | uα1 , . . . , uαm

)

or, equivalently, by differentiatingB(m)
n (p). The first approach provides the weight

(
n

m

)−1 ∑

1≤α1<...<αm≤n

(
u[αi+1] − u[αi]

)

which, obviously, is positive. It is a matter of elementary combinatorics to write

∑

1≤α1<...<αm≤n

u[αi+1] =
n+1−m+i∑

h=i+1

(
h− 1

i

)(
n + 1− h

m− i

)
u[h]

and to establish that the weights thus obtained correspond to those obtained by differen-
tiatingB

(m)
n (p).

The mathematician might discuss an alternative basis of the linear space of functions
on [0, 1], e.g. that of orthogonal (ordinary, or trigonometric) polynomials. This can be
done with respect to the estimation ofb but is of particular interest if we are discussing
the estimation of the densityg = G′ of U1 = Ψ(X1) (with G = F ◦Ψ−1 = B−1).

Let ϕ0 ≡ 1, ϕ1, ϕ2, . . . be any system of linearly independent functions onL2[0, 1].
(Note thatL2[0, 1] ⊂ L1[0, 1]. We do not regard it as a severe restriction if the density
g to be estimated is supposed to be inL2[0, 1].) The Gram-Schmidt orthogonalization
process provides the orthonormal basisψ0, ψ1, ψ2, . . . of (a subspace of)L2[0, 1]. Note
that

ψ0 ≡ ϕ0 ≡ 1,

ψr+1 =

(
ϕr+1 −

r∑

i=0

(ϕr+1, ψi)ψi

(ψi, ψi)

) /∣∣∣∣
∣∣∣∣ϕr+1 −

r∑

i=0

(ϕr+1, ψi)ψi

(ψi, ψi)

∣∣∣∣
∣∣∣∣
2

,

(r = 1, 2, . . . ,). If a functionh ∈ L2[0, 1] (a quantile density or a probability density)
can be written as a linear combination ofϕ0, . . . ϕk then it can equally well be written as
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a linear combination ofψ0, . . . , ψk. A useful orthonormal basis is that of the normalized
shifted Legendre polynomials

ψr(u) = (−1)r
√

2r + 1
r∑

k=0

(
r

k

)(
r + k

k

)
(−u)k, r = 0, 1, . . .

which is obtained by applying the Gram-Schmidt process toϕh(u) = uh, (h =
0, 1, . . .). We elaborate on two lines of thought.

(1) Focussing on the quantile densities, and starting from the estimateb
(m)
n , we

can considerϕh(p) = ph (h = 0, 1, . . .) and determine the weightswn,h such that

b
(m)
n (p) =

∑
wn,hph. The deviations from the ‘ideal’ weightswn,0 = 1, wn,1 = . . . =

0, corresponding to H0: b ≡ 1, are

(2ū− 1) = 2ε, 2(1− 2ū) = 4ε

in casem = 1 (see Section 3),

3(ε− 1
2δ), −6ε + 9

4δ, −9δ

in casem = 2 (see Section 4), etc. They can be used as the basis of aχ2
m test (see the title

of Pearson’s original paper). It is obvious, however, that in practice more weight should
be attached to earlier standardized deviations than to later ones. This is done in a (more or
less) ‘natural’ way if we useT (m)

n as test statistic. (Motivation is primarily mathematical;
the discussion in Section 4 shows that the weight assigned to the first squared standard
deviation is much, perhaps too much, larger than that assigned to the second.)

(2) Focussing on probability densities inL2(0, 1), Neyman (1937) provides a
general approach to the problem of testing H0: g ≡ 1 on the basis of the outcome
u1, . . . , un of an independent random sampleU1, . . . , Un from a distribution with den-
sity g. The structure ofL2(0, 1) was used by choosing a numberk and some sys-
tem ϕ0 ≡ 1, ϕ1, . . . , ϕk of linearly independent functions on(0, 1) or, preferably,the
systemψ0, . . . , ψk obtained fromϕ0, . . . , ϕk via orthonormalization. Assuming that
g ∈ L2(0, 1), one can think about the projection1 +

∑k
j=1(g, ψj)ψj of g on thek + 1

dimensional subspace spanned byϕ0, . . . , ϕk or, equivalently, byψ0, . . . , ψk. Here
the inner-products (Fourier-coefficients)(g, ψj) correspond to the expectationsθj =
E ψj(Ui) =

∫
ψj(u)g(u) du which can nicely be estimated by using the sample means

θ̂j = n−1
∑n

i=1 ψj(ui), providing the estimatêg = 1 +
∑k

j=1 θ̂jψj of the true density
g. In thisL2-approach it is convenient to usen||ĝ − 1||22, i.e.

n

k∑

j=1

θ̂2
j =

k∑

j=1

{
n−1/2

n∑

i=1

ψj(ui)

}2

as test statistic because its distribution under H0 is approximately that ofχ2
k. (Note that

E0ψj(U) = (ψj , 1) = 0, etc.) This suggests to use the P-value

P


χ2

k ≥ n−1
k∑

j=1

(
n∑

i=1

ψj(ui)

)2
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as degree of belief in H0. The choice

ϕ0 ≡ 1, ϕ1 = 1[p0,p0+p1), ϕ2 = 1[p0+p1,p0+p1+p2), . . . , ϕk = 1(1−pk,1]

provides Karl Pearson’s P-value

P


χ2

k ≥
k∑

j=0

(nj − npj)2

npj




wherenj is the number of observations in cellj (j = 0, . . . , k).
Many authors have discussed the choice of the numberk. Karl Pearson himself stated

‘Thus, if we take a very great number of groups our test becomes illusory. We must
confine our attention in calculating P to a finite number of groups, and this is undoubt-
edly what happens in actual statistics. The numberk of degrees of freedom will rarely
exceed 30, often not greater than 12’, (see Pearson, 1900). Later generations of statis-
ticians, dealing with Neyman’s smooth tests, have made other recommendations about
k. Kallenberg et al. (1985) states with respect to Pearson’s test: ‘In a classical paper
by Mann and Wald (1942), a rule is given to letk increase withn roughly at the rate
n2/5 when using intervals with equal probability under H0. More recent numerical work,
however, has shown that for particular alternatives, a small fixed value ofk often gives
much better power (cf. Best and Rayner, 1981)’. Regarding the choice of the number of
componentsk in Neyman’s test, Rayner and Best (1989) states that ‘k ≤ 4 will usually
suffice’. (See Inglot et al. (1990, 1994), Kallenberg et al. (1985) for extensive analyses
in this respect.)

All χ2
k tests considered have in common that thek underlying test statistics (in Sec-

tion 4 the sample mean and Gini’s mean difference) are used as the basis of the consid-
eration: all other possibilities are ignored. With respect to Neyman’s smooth test this
implies that thefirst basis vectorsϕ0, . . . , ϕk (or, equivalently,ψ0, . . . , ψk) are incor-
porated and, hence, an intuitive idea exists that the earlier basis vectors (lower degree
polynomials) are more important than later ones. This suggests that it may be advanta-

geous to replace the unweighted combination of theχ2
1-statistics

{
n−1/2

∑n
i=1 ψj(ui)

}2

by a weighted sum providing the P-value

P


w1Z

2
1 + . . . + wkZ2

k ≥
k∑

j=1

wj

{
n−1/2

n∑

i=1

ψj(ui)

}2



whereZ2
1 , . . . , Z2

k are independentχ2
1 variables. With respect to an idealized context,

the choicewj = j−1/2 is discussed in Schaafsma and Steerneman (1981) as one of the
possibilities to obtain a substantial improvement of power properties in the subalternative
defined byδ2

1 ≥ δ2
2 ≥ . . . ≥ δ2

k whereδj = (ψj , g). It follows from Section 4 that using

T
(m)
n as test statistic is in line with this idea of using decreasing weights. (The fact that

T
(m)
n is anL1-norm difference whereasn||ĝ − 1||22 is anL2-norm difference is of minor

interest.)
Remark. The estimatêg of the unknown true densityg is usually not a probability

density itself: it is true that
∫ 1

0
ĝ(u) du = 1 but usually not true that̂g(u) ≥ 0 (0 < u <
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1). There are many ways to adaptĝ such that a probability density is obtained. Using
approach(1) is one of the possibilities. Another one is the maximum-entropy approach
described in Jaynes (2003): suppose we have estimatesθ̂j = n−1

∑n
i=1 ψj(ui) of the ex-

pectationsθj = (ψj , g) and are interested in the true densityg of Ui (i = 1, . . . , n). Our

estimatêg of g ‘should’ satisfy the restrictions
∫ 1

0
ψj(u)g(u) du = θ̂j , (j = 1, . . . , k)

and be such that the (Shannon) entropy

−
∫ 1

0

g(u) log(g(u))du

is maximum. The solution to this optimalization problem is, somewhat surprisingly, that
ĝ = gθ̂ where

gθ(u) = exp (θ1ψ1(u) + . . . + θkψk(u)− c(θ))

defines an exponential family and̂θ is the maximum likelihood estimate ofθ. If one
imposes the model thatg ∈ {gθ; θ ∈ Rk} and tests H0: θ = 0k versus A:θ 6= 0k by
applying the Wilks-Wald asymptotics to the Neyman-Pearson likelihood-ratio principle,
then one arrives at theχ2

k test based onn||θ̂||22 described.

7 Relations with other goodness of fit tests
We are fascinated by the total-variation (orL1) distance||f − ψ||1 and the Kolmogorov
distance||F − Ψ||∞. The underlying motivation is largely mathematical: the total-
variation distance is invariant under bijective mappings while the Kolmogorov distance
is invariant under monotonous transformations. Under certain additional assumptions we
have that||f − ψ||1 = 2||F − Ψ||∞. We always have||f − ψ||1 ≤ 2||F − Ψ||∞ (see,
e.g., Lòeve, 1955). Both distances are such that they do not change if distribution func-
tionsG = F ◦ Ψ−1 are replaced by corresponding quantile functions. The test statistic
T̃

(m)
n = ||F (m)

n − Ψ||∞ is obtained by replacing the unknown true quantile functionB

in ||F −Ψ||∞ = ||B − 1||∞ by the corresponding estimateB(m)
n which is a continuous

and increasing analogue of the empirical quantile function. Kolmogorov’s test (1933) is
based on||B̂ − 1||∞ whereB̂ is the empirical quantile function. As the true quantile
function is smooth, the estimatesB

(m)
n will be closer to the truth, on the average, than

the discontinuous functionŝB on which they are based. That is why it is reasonable to
expect that the power properties of the tests based on||f (m)

n − ψ||1 and||F (m)
n − Ψ||∞

are somewhat better than those based on Kolmogorov’s test. Much will depend, however,
on the alternative hypotheses to be considered and on the choice ofm to be made.

A delicate issue is as follows. If one accepts that the context asks for a test statistic
of the form||f̂ − ψ||1 then the question arises which nonparametric density estimatef̂
one should use. In De Bruin et al. (1999) it was made very clear that the estimatorfn =
f

(n)
n studied there is ‘not unreasonable though some further improvement is possible’.

Such improvement can be achieved by usingf
(m)
n instead offn, or by using a kernel

estimatorkn, preferably with the bandwidth determined such that the method is optimal
for estimatingψ itself (note thatψ is given). The comparison between the tests based on
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the specific statistic||f (m)
n − ψ||1, with m = bn1/3c recommended, and||kn − ψ||1 will

depend on a large number of specifications with respect tokn, e.g. of the basic kernel
and its bandwidth. The comparison will also depend on the alternative hypotheses for
which power comparisons are made, etc. Arguments in favor ofT

(m)
n = ||f (m)

n − ψ||1
(andT̃

(m)
n = ||F (m)

n − Ψ||∞) include thatthe distribution of the test statistic under H0

does not depend onψ. Critical values of the distribution ofT (m)
n can be found in Table

5.1. (T̃ (m)
n has not yet been considered.) For the test statistics||kn − ψ||1 additional

simulation studies would be needed for anykn andψ of interest.
Conclusion. A plethora of methods exists to test H0: f = ψ. One class of methods

is that ofχ2
k tests. These tests have in common that they are based onk ‘deviations from

the probable’ (see the title of Pearson, 1900). These deviationstj − µj have their origin
in test statisticsTj with expectationsµj under H0. If theseTj constitute a ‘correlated
system’ (see, again, the title of Pearson, 1900), as is the case in general, then they can be
combined by using(T − µ)′Σ−1(T − µ) as omnibus statistic. HereΣ is the covariance
matrix of T under H0 and the (asymptotic) distribution under H0 is that ofχ2

k. Even
for fixed valuek, manyχ2

k tests exist because the attention can be restricted to different
(k + 1) dimensional subspaces ofL2([0, 1]) (see Section 6 and note that theχ2

k tests
corresponding to different bases(ϕ0, ϕ1, . . . , ϕk) of such(k + 1)-dimensional subspace
are not equivalent). Section 4 shows thatχ2

k tests may also appear in a different manner.
Other tests have their origin in the mathematical argument that||f̂ − ψ||1, or ||F̂ −

Ψ||∞, or
∫

(F̂ − Ψ)2 dΨ, etc., ‘should’ be chosen as test statistic. Note that||f̂ − ψ||1
is invariant under bimeasurable bijections and that||F̂ − Ψ||∞ and

∫
(F̂ − Ψ)2 dΨ

(=
∫ 1

0
(G(u)− u)2 du) are invariant under monotonous transformations.

The practical statistician has to choose one specific testing method from this plethora.
Followers of the Neyman-Pearson theory will argue that the choice of test statistic should
depend on the alternatives toψ which have to be taken into account. At the beginning
of Section 1 we deliberately did not specify any alternative because we hoped that a test
statistic||f (m)

n − ψ||1 with specific value ofm, e.g.m = bn1/3c, is ‘universally rec-
ommendable’ if H0: f = ψ has to be tested in the case of sufficient smoothness and
regularity off andψ. We shall see in Section 8 that such ‘universally recommendable’
test does not exist. For alternatives with densityg (after the probability transform) sym-
metric around1/2, our test is less ‘usually’ powerful than Neyman’s smooth test based
on ϕh(u) = uh (h = 0, . . . , k). Our test, however, has very good power properties if
H0: f = ψ has to be tested against alternatives whereg is a monotonous function ofu or,
equivalently, where the likelihood ratiof/ψ is monotonous. This conclusion, however,
affects the idea thatT (m)

n with m = 3
√

n is ‘universally recommendable’. Other test
statistics of the form||F̂ − Ψ||∞ or

∫
(F̂ − Ψ)2dΨ, etc., either withF̂ = F

(m)
n or with

F̂ the empirical distribution function, will also not be ‘universally recommendable’.

8 Power Comparisons
In Miller and Quesenberry (1979) and Inglot et al. (1994), power properties were deter-
mined forχ2

k tests in order to study the choice ofk that is most appropriate. It is in this
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Figure 8.1Top row, from left to rightg1, g2 andg3. Bottom row, from left to rightg4, g5 and
g6. All horizontal axes go from 0 to 1, the vertical axes from 0 to 2

respect that the attention is concentrated on the alternatives

• g1(u) = 1/(2
√

u)

• g2(u) = 2− 4|u− 1/2|
• g3(u) = (1/

√
u + 1/

√
1− u)/4

• g4(u) = 4|u− 1/2|

discussed in Miller and Quesenberry (1979) and the alternatives

• g5 = 2/
√

9− 8u, which isgθ with θ = 3
4 , and

• g6 = eu/(e− 1), which isg̃θ with θ = 1,

which appeared in the theoretical intermezzo of Section 3 (and at the end of Section 1)
(see Figure 8.1). Note thatg1 andg3 are not inL2(0, 1). Powers for various choices of
k andm and various sample sizes are reported in Table 8.1. As Neyman’s test fork = 1
(andϕ0 ≡ 1, ϕ1(u) = u) is in exact agreement with our test form = 1 (see Section
3), the differences between the columns underk = 1 and underm = 1 are caused
by randomization and approximation errors, respectively. The column underm = 1 is
obtained as follows. For themonotonousalternativesg1, g5, andg6 we computed the
noncentrality parametersδi as in Section 1 providingδ1 = 3−1/2n1/2, δ5 = 12−1/2n1/2

andδ6 = |(e− 1)−1 − 1
2 |121/2n1/2 = .0811/2n1/2 for the test based on|ū− 1

2 | (see the
end of Section 1 and Section 3). From theseδ’s the powers underm = 1 were obtained
by using the formulaΦ(−1.960 + δ).

The results forg1, g5 andg6 reported in Table 8.1 are in line with what one should
expect: the alternativesg5 andg6 were chosen (see Section 3) such that it is ‘optimal’ to
choosek = m = 1. For increasingk, Neyman’s test looses power faster than our test
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altern. n Neyman Usingt
(m)
n

k = 1 2 3 4 m = 1 2 3 4 5 6 7 8
g1 10 47 51 52 53 57 49 50 49 48 47 47 48

20 74 77 78 78 73 73 74 74 74 74 74 73
50 98 99 99 99 98 98 98 98 98 98 99 99

g2 10 0 21 11 11 1 1 1 2 4 8 11 13
20 0 62 48 39 1 1 2 8 16 26 37 40
50 0 99 97 95 1 0 19 57 77 86 91 93

g3 10 10 30 30 35 10 11 12 13 13 14 16 19
20 10 45 44 52 10 11 12 13 14 18 21 24
50 10 79 76 84 10 12 14 19 30 39 49 55

g4 10 11 26 23 19 11 12 13 15 16 17 21 25
20 11 63 58 59 11 12 13 16 18 23 31 38
50 11 96 94 96 11 11 15 25 44 59 70 78

g5 10 15 13 13 12 15 16 16 16 16 16 15 15
20 25 21 19 18 25 26 26 26 26 25 25 25
50 54 47 43 39 53 56 56 56 56 55 55 55

g6 10 14 10 9 9 14 15 15 15 15 15 14 14
20 24 18 15 14 25 25 25 25 25 25 24 24
50 52 42 36 54 52 54 53 53 53 52 52 52

Table 8.1Rejection percentages (atα = 5%) for Neyman’s smooth tests (withϕj(u) = uj ,

j = 0, . . . , k) with k = 1, . . . , 4 and the tests based ont(m)
n with m = 1, . . . , 6. The

Neyman data forg1, . . . , g4 are obtained from Miller and Quesenberry (1979). The numbers
in columnm = 1 are obtained using the method described in Section 8. All other percentages
are based10000 Monte Carlo-replications. The correspondence between columnsk = 1 and
m = 1 suggests that the simulations and the asymptotic results are sufficiently reliable (except
for the result forg1 andm = 10 where the asymptotics is unreliable).)
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does for increasingm. The reason is obvious: our test stays closer to the test studied in
Section 3 (see Section 4). The alternativeg1 is such that Neyman’s test is a bit better
because it is faster in picking up additional information.

For thesymmetricalternativesg2, g3 andg4 we computed the variancesσ2 of (Ū −
1
2 )n1/2 and compared these with the varianceσ2

0 = 12−1 under H0. The powers in the
column underm = 1 are next computed by using the formula2Φ(−1.960σ0/σ). For
g2 we haveσ2 = 24−1 and, hence,2Φ(−1.960

√
2) = .006. For g3 andg4 we have

σ2 = 7/60 andσ2 = 8−1 with corresponding powers approximately.098 and .110,
respectively.

The results forg2, g3, andg4 reported in Table 8.1 are in line with what one should
expect: the lack of dispersion ofg2, compared with the uniform density, has the effect
that the power is less than5% if the choicek = m = 1 is made. This shows that
the test based on|ū − 1

2 | is not unbiased size-α. For k = m ≥ 2, Neyman’s test is
preferable for these symmetric alternatives because our test puts relatively more weight
on the deviation|ū − 1

2 |. It is not true, however, that, e.g., Neyman’s test fork = 2
is unbiased size-α. To establish this, we considered the case whereU has the discrete
distribution 1

211/2−1/
√

12 + 1
211/2+1/

√
12. We do not suggest that our test is unbiased

size-α.

9 General conclusions
The problem of testing H0: f = ψ against A:f 6= ψ, or A: ||f − ψ||1 > 0, is too ‘ill-
posed’ to be settled satisfactorily. Classicalχ2

k tests like those of Pearson or of Neyman
(and those studied in Section 4) are asymptotically of size-α, but they are not ‘optimal’
in an overall sense.

The choice of the number of degrees of freedomk in theseχ2
k tests is difficult to

make. In Section 1 we cited Kallenberg et al. (1985) which claims that a small fixed
choice of the number of cells in aχ2 test gives best power. Rayner and Best (1989) made
a similar statement. Ledwina (1994) stated that ‘recommendations in statistical literature
are sometimes confusing’. Schaafsma and Steerneman (1981) considered an idealized
context where ‘decreasing weights’ are assigned to theχ2

1 distributed components ofχ2.
Recent papers (Ledwina, 1994, Inglot and Ledwina, 1996, Kallenberg and Ledwina,
1995, Inglot et al., 1994) on Neyman’s test prescribe the use of data-driven methods,
where the choice ofk depends on the data set. One of the suggestions is to use Schwarz’s
Bayesian Information Criterion to choose the dimension for the appropriate exponential
model for the data, and to use this dimension ask.

Fascinated by the mathematical formulation A:||f − ψ||1 > 0 of the alternative
hypothesis we started our investigations in the hope that a satisfactory compromise would
be achieved by rejecting H0 for sufficiently large outcomes of

t(m)
n = ||f (m)

n − ψ||1
and a specific choice ofm, e.g. m = bn1/3c. The power computations in Section 8
indicate that (1) the choice ofm is much less crucial than the choice ofk in χ2

k tests, (2)
for m = k ≥ 2 theχ2

k test is definitely preferable if alternativesf 6= ψ are considered
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193 195 205 213 219 224 241 245 246 247 248 250 252
252 253 254 256 257 258 265 266 267 267 268 269 269
270 270 272 272 276 276 276 280 280 283 283 284 285
288 289 290 291 293 297 299 299 300 305 318 335 347

Table 10.1Azimuth measurements by Bom (1978)

such that the corresponding density is symmetric around1
2 as is the case withg2, g3, and

g4 in Table 8.1, (3) for alternativesf with f/g monotonously increasing or monotonously
decreasing (seeg1, g5, andg6 in Table 8.1) rejecting H0 for large outcomes oft(m)

n

with m = bn1/3c seems to provide the ‘satisfactory comprimise’ we are looking for.
However, Table 8.1 suggests that a data-dependent approach for findingm might yield a
more satisfactory compromise.

Conclusion. Testing H0: f = ψ versus A:f 6= ψ is a Pandora’s box. Consensus
about a testing method cannot easily be attained. Note that in the approach of Section 6
a specific choice of basis functionsϕ0, . . . , ϕk is needed. Our test, withm = bn1/3c,
provides a ‘very reasonable’ approach if H0 has to be tested against the subalternativeA′

of A defined by monotonicity off/ψ. We suggest that it is also a reasonable approach if
H0 has to be tested against the wider subalternativeA′′ defined by stochastic inequality,
i.e. by F ≥ Ψ. If the alternatives of interest are different, e.g. becauseψ has been
adapted to location/scale characteristics of the sample, then one should not proceed with
our test (at least not with the choicem = bn1/3c indicated). It will then be difficult to
compromise between the plethora of tests available.

10 An example from archaeology
Starting with Van Giffen (1925, 1926), many scientists made statements about the prefer-
ence direction of Dutch passage mounds or, more precisely, the chamber in the interior of
such dolmen. An east-west preference direction was documented. Various definitions of
the main direction of (the chamber of) passage mounds are proposed and corresponding
‘azimuth measurements’ are reported in literature. The azimuth of an (undirected) line
segment is obtained by measuring the number of degrees, from south via west and north,
to provide a value between180◦ and360◦. In some protocols it was mentioned that the
actual azimuth measurement reported is the average of two azimuth measurements, one
derived from the eastern end of the mound and one from the western end.

Table 10.1 reportsn = 52 ordered azimuth measurements, collected by Bom (1978).
We regard these valuesx[1], . . . , x[52] as the outcomes of the order statistics correspond-
ing to an independent random sample from a distribution with densityf on [180, 360]
(such thatlimx↘180 f(x) = limx↗360 f(x); we shall ignore this additional informa-
tion). We shall test the null hypothesis

H(1)
0 : f(x) = 1

180 , 180 < x < 360,
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Test H(1)
0 H(2)

0

T
(3)
52 2 40

T
(4)
52 0 29

Neyman (k = 3) 0 8
Neyman (k = 4) 0 3
χ2 (k = 3) 0 14
χ2 (k = 4) 0 2

Table 10.2P-values (in %) for the testing ofH(1)
0 orH

(2)
0 on the basis of the data in Table 10.1.

The Neyman tests are applied withϕj(u) = uj , j = 0, . . . , k, andk = 3 and 4. Pearson’s
χ2-test results are based on(k + 1) = 4 and 5 equiprobable classes

of uniformly distributed azimuth values, as well as the null hypothesis

H(2)
0 : f(x) = 1

90

(
1− 1

90 |x− 270|) , 180 < x < 360,

that f is the density of the mean12 (X1 + X2) of two independent random variables,

both uniformly distributed on[180, 360]. The motivation for formulating H(2)0 originates
from the remark that azimuth values were sometimes obtained by taking the average of
two values, one from the eastern end and one from the western end. (The testing of
H(2)

0 should be regarded as a mathematical exercise rather than as something of genuine
archaeological interest.)

Table 10.2 provides results in the form of P-values. Our test is used with bothm = 3
andm = 4 because3 < 3

√
52 ≈ 3.73 < 4. We compared this with other tests discussed

in this paper. All tests considered forH(1)
0 have P-values below2%. Neyman’s test (with

k = 4) and Pearson’sχ2 test (with 5 equiprobable classes and, thus,k = 4 degrees of
freedom) rejectH(2)

0 atα = 5%. The other tests considered, do not reject this hypothesis,
and our test (both withm = 3 asm = 4) has considerably larger P-values than the other
ones. This illustrates the conclusion of Section 9.
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