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Summary: To test the hypothesisH f = « that an unknown density is equal to a specified
one,, an estimatef of f is compared with). The total variation distancéf — «||: is used as
test statistic.

The density estimaté considered is a peculiar one. A table of critical values is provided, this
table is applicable for arbitrary.

Relations with other methods, Neyman’s smooth tests in particular, are discussed and power
comparisons are performed. In certain situations, our test is recommendable. An example from
practice is provided.
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1 Introduction

After Karl Pearson’s breakthrough paper (1900) aboutdisest, many improvements
were suggested. Neyman (1937), for example, considered continuous analogues of Pear-
son’s problem. We concentrate the attention on such analogue.

Problem. Given are the ordered outcomeg; < x5 < ... < z[, of an indepen-
dent random samplé&,, ..., X,, from a probability distribution ofR with a ‘smooth’
density f, not unlike a given density = ¥’. Required is a statement about the truth or
falsity of the hypothesisly: f = v of equality.

The statistician who has to solve this problem may be appalled by the abundance
of proposals. Pearson’s test depends on a classification of the data. Neyman’s smooth
test (1937) (see Section 6) requires that one specifies an orthonormal basisIfer an
space and restricts the attention to the first 1 basis vectors. The Kolmogorov test
(Kolmogorov, 1933) is yet another possibility. In the past decade, pre-test procedures
(cf. Albers etal., 2000, 2001) and data-driven tests (cf. Ledwina, 1994, Kallenberg and
Ledwina, 1995, Inglot and Ledwina, 1996) were developed.

We start from the idea that it is natural to choose some estifnate and to compare
this estimate with the postulated densitypy rejecting H if f and« are ‘too different’.

This idea, dating back to Bickel and Rosenblatt (1973), is commonly used in goodness-
of-fit theory (see Hart (1997) for a summary). In our constructionpwil be rejected if

the ared|f — ¢|, = [|f(z) — v(z)| dz between the graph af and that off is suffi-

ciently large. The density estimafe(see Albers and Schaafsma, 2003) we recommend
will be constructed in Section 2. It is not a kernel estimate in the usual sense. The null
distribution of the test statistic is studied to determine P-values and to construct a table
of critical values. This table will be reported in Section 5 which, together with Section

2, contains the essence of this paper. (Sections 3 and 4 provide elaborations for special
cases useful in making interpretations.)

Our estimatqg depends on the sample sizend on the degree of a specific poly-
nomial. That is why the notatiof = £\™ is used, together with™ = Hff,,m) — Y
for the outcome of the test statisié™. In Section 8 we shall recommend choice of
m = [n'/3]. The P-valuePo(T\™ > t™) = a(z) will be used as degree of belief
in Hy. HereP refers to the distribution oT,(f”) under Hy. If Hq is rejected fora(x)
smaller than some nominal level, then one is acting according to the general Neyman-
Pearson theory. In practice, this is often fairly natural.

If Hy is maintained then one will usually proceed under the assumptiorf that).
If Hy is rejected then one will sometimes proceed on the basis of an estimét&uvefdo
notrecommend to use the densjt§f* with m = |n'/3| which we use in testing §J but
the densityf\™ with m = |n1/2] (as outlined in Albers and Schaafsma (2003)). (The
use of the P-value as ‘degree of belief’ is considerably questionable from a foundational
point of view. See, e.g. Salanet al. (1999)).

Applying the probability transform; — «; = ¥(x;) we obtain

ugo; = 0, up) = \IJ(IL‘[i]) (i=1,...,n), Uppy1) = 1.

Note that¥ (X;) has distribution functiol’ = F o 1, quantile functionB = G~*
U o F~1, density functiong(u) = f(¥~1(u))/v(u), quantile density(p) = B'(p

)
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389 744 865 940 1000 11.27 1152 1423 1552 15.63
16.39 17.33 18.37 21.12 21.76 2254 23.29 23.36 24.17 24.57

Table 1.1Data of the example considered in Section 1

etcetera. The hypothesigHf = v is equivalentto lJ: g = 1andto H: b = 1. ltis
interesting to note that the distribution of the test stati|$ﬁ£,’") — 1|, does not depend
on the density) to be tested. If applications are made then the density estiféﬁfeis
displayed together with the null density

Example. Throughout this manuscript, we shall work with the following theoret-
ical example (a concrete application is considered in Section 10). Consider the data
xp), - -+, T20 given in Table 1.1. The information is provided that the underlying den-
sity f is such that the suppoft:; f(x) > 0} = (0,25). We want to test it f = ¢
wherey is the density of the uniform distribution @6, 25). Figure 1.1 presents graphs
of the density estimateg(gl) to be specified in Section 27 = 1,2, 3,4). To test H:
f = 1, we consider either one of the shaded areastQ(g” —Y|l1 (m = 1,2,3,4)
which are.141, .212, .252, and.277. The data in Table 1.1 have actually been obtained
by sampling from the distribution of0, 25) with density f (z) = x/625 + 1/50. The

density estimatg‘ég) is closer tof thaan(é), andfz(é) is even closer, whilst in this exam-

ple, fég) is the ‘best estimate’ of. Table 5.1 (properly extended) provides the P-values

.029, .028, .032, and .034 if one uses the shaded arfégg — Yl (m =1,2,3,4) to
test Hy. These P-values are less different than one might expect. The reason is that the
underlying test statistidﬁg(gn) are strongly correlated (see Section 4).

Note that Karl Pearson’s test requires the specification of the nuinber of cells
such that the( distribution applies. If we také = 1, then we arrive at the two-sided
sign test which, for our data, provid®s= .263. If we takek = 2, then we have to work
with the exact null distribution of Pearson’s statistic. Computations provided. 14.

An elementary discussion.Confronted by the differences between these P-values,
the reader will, hopefully, appreciate the following preparation to more sophisticated
discussions Sections 7, 8, and 9 (the quick reader might continue with the last sentence
of this section). The data of Table 1.1 were obtained by sampling from the distribution
indicated because this allows computation of powers using formulas from elementary
analysis. The first step is to apply the probability transform wheres replaced by
u; = ¥(x;) = z;/25. The true distribution ot/; = ¥(X;) has distribution function
G = FoU~! whereG(u) = F(25u) andg(u) = f(¥~(u))/1(u) = 25f(25u) =
3 + u. We concentrate the attention on the formulation Hg = 1 or, equivalently,

Ho : b = 1, whereb is the quantile density.

If a simple alternative is considered, e.g.:Hy(u) = 2u, then we can apply the
Neyman-Pearson Fundamental Lemma. For this special alternativeeHeject H if
[T, w; is sufficiently large or, equivalently, -2 > log(u;) is sufficiently small. It
is well known that the distribution of-2 Y log(U;) is x3,, if Hg is true. The P-value
P (x3, < —2> log(u;)) =P (x3, < 21.62) thus obtained, for the example, is equal to
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Figure 1.1 Density functions for the data of Table 1.1, for = 1 (left) to m = 4 (right).
Shaded areas are the test statisii@é). (In practice, we recommend to use= |20%/3| = 2
to test Hy andm = |201/3 | = 4 to estimatef.)

.0078. Hence Klis rejected at all levels of significanee> .0078.

In practice we do not know which simple alternative to choose. That is why we study
the omnibus test based on some test stati&fi¢’ with outcomet|™ = ||f7§m) — |1
In the present contex|t,f2(é) —1||1 happens to coincide witlu — 1/2| = .141 because
a = 207132 w; = .641. Itis of interest for later interpretations to note that, due to

chance fluctuations, this outcome is considerably larger than theﬁdl:llw@n +1)du=
.583 to be expected if one samples from the true dengity

Elementary power computations (for the true dengitynd the corresponding den-
sity g) were made for the tests based on the test statistics with outcpfnes> " u;,
[T(u; + %), and Y sign(u; — 1) or, equivalently, for those with outcomés h(u;)
with b : (0,1) — R defined byh;(u) = logu, ha(u) = u, hs(u) = log(u + 3),
andhy(u) = sign(u — 1), respectively. If one rejectsdd f = 1 or, equivalently,
Ho: g = 1if > h(u,) is sufficiently large, then one is using a leveltest which is
Uniformly Most Powerful (UMP) levek: for testing Hy against all alternatives of the
form g(0) = c(0)exp(6h(u)) with & > 0. The maximum power in the true density
go(u) = 3 +uis obviously achieved ifi3(u) = log(1 +u) is used. Using the asymptotic
normality of >° 2(U;), both under H: g = 1 and under Hi: g(u) = § + u, approximate
powers can be computed analytically. Using: Eq(h(U)) ando? = Varg(h(U)) to de-
note mean and variance bfU) under Hy, andy’ = E; (h(U)) to denote the mean under
H,, the power of the one-sided leveltest is approximately given by— ®(z, —J) where
@ is the distribution function of the standard-normal distributian~= ®~!(1 — «), and
§ = n'2(y' — p)/o. Forh = h; andn = 20 as in Table 1.1, we obtaif; ~ 1.12,
1.29, 1.28, and1.12 respectively. Powers — ®(z, — ¢;) in the true distribution are
approximately equal té — ®(1.645 — §;) = .30, .36, .36, and.30 if « = .05 and the
one-sided levek tests are used. They are abdut ®(1.960 — J;) = .20, .25, .25,
and.20 if the two-sides sizer tests are used (with equal tail probabilities). Thatwhs
rejected at all levels of significanee> .0078 if h; is used and at all levels > .029 if
hs or hs is used is more surprising than the non-occurrence of statistical significance if
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i Pij

1 2 %ﬁ = .866

1 3 —m2+12-3(log 2)? —6Lia(— ) = 915
6+/4—3(log 3)2

1 4 log 2 =.693

4—3log(3) 3 —

2 3 20 iz =990

2 4 %\/ﬁ = .866
5log3-2log2 =

3 4 M= 1CTE .850

Table 1.2 Correlationsp; ; for the four types of test statistic. (The computatiery uses
fol log(u) log(u + %) du = —%Lig(—%) +2- ﬁwg — (log/2)2 —log /27 + log 2 (cf.
Lewin, 1991) wherd.iz(z) = fzo t~1log(1 — t) dt is the second polylogarithmic function).

Pearson'sy?-test is used. (Due to chance fluctuations, the sample reported in Table 1.1
is such that, as already observads= .641 is considerably, but not significantly, larger
thanE hy(U) = .583.)

A peculiar drawback of the two-sided tests basedvprho, h3, andh, (either with
equal tail probabilities under¢-br with adapted values such that unbiasedness is achieved
for all alternatives of the formgy(u) = c¢(0)exp(6h(u)) with § # 0) is that these leved
tests arenot unbiased sizer for testing Hy against the omnibus alternative A: densities
f # v exist beyond the exponential family such that the probability of rejectingsH
less thanv if this density is the true one. (This drawback is not restricted to tests of the
form indicated, see the end of Section 8.) Finally, we note that the correlations computed
under H) and presented in Table 1.2 indicate that the tests baséd andhs are almost
equivalent whereas, in spite 6f ~ J4, the tests based d, andh, are considerably
different.

The intuitions following from these computations are in line with the discussions to
be presented in Sections 7,8, and 9.

2 Specification of the proposed test statistic

TotestHy: f =1, consider the area
1 =%l =lg = th =116 - 1]k

between the graph af and that off(: ,(Lm)). Note that the first equality follows

from the fact that thd.; norm corresponds to the total variation norm which is invariant
under bimeasurable bijections. (This invariance is the main reason why we consider the
L, norm as more ‘natural’ than, e.g., thg horm which is behind the smooth tests of
Neyman, that of Pearson included, see Section 8.) The second equality can be established
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by noting that|b — 1||; is equal to

/01|B’(p)—1 dp = /01 (G (p)—1] dp
4 .
:/0 g(G_l(p))l’ dp
:/O ‘g(lu) 4‘ dG(u)
= |lg = 1.

To define the special estimafé’”), we start from the Bernstein polynomial approxi-
mation

n+1

n+1\ ; nt1—i
Bn<p)=2um( Z. )p (1—p)
1=0

of degreen + 1 to the empirical quantile function (see fMoz Perez and Feandez Pa-
lacin, 1987, De Bruin et al., 1999). This special estimBtgp) of B(p) is attractive
because the derivative

n

bulp) = Y (e — ) () 0+ 1

=0

is a true probability density function: it is positive and integrates up to one. By numer-
ical transformation (via#,, = B,;! o ¥), an estimatef,, of f is obtained. To increase
performance, Albers and Schaafsma (2003) replagdny a smoothed versidff[”’) (the
degree ofB,, is lowered fronm + 1 to m + 1, and, hence, that d@f, from n to m). In

the density estimation case it was suggested tostake [n'/?|. In the present context

of testing Hy: b = 1 some further smoothing is indicated. We recommend a choice of
m = |n'/3| if an omnibus test is required. For motivation behind our recommendation,
see Sections 8 and 9.

The idea to use some quantile-function estimate in hypothesis testing is not new, and
dates back to Parzen (1979). LaRiccia (1991), for example, gives an approach using such
quantile function to test HE' € F whereF is some class of distribution functions. We,
however, are fascinated by the crucial problem of testing the simple (i.e. not composite)
hypothesis ij: f = . (Our test, withm = |n!/3|, is not recommendable if is
obtained by using the data to specify some particilag F; the rationale behind our
fascination is primary ‘philosophical’: we are interested in ‘the limits of reason’, see
Section 9 and (Albers, 2003).)

The definition of B™ (and, hence, 0b™, g™, ™, etcetera) is as follows.

Let B,,(p|lu1, ..., u,) correspond taB,,(p) if n = m and the outcomes,, ..., u,,
(unordered) have to be evaluated. Definelthstatistic

Bgmkp)—(”)l S Bulpluar. s ta)

m
1<ai<...<am<n
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This can be rewritten as the-statistic
m n—m-+j (i—l) (n—z)

m m E + 1 i m+1—j E j— —J
B’r(L )( ) =P + + (mj )p](l _p) +1-J . 1(’n3n . u[l]
Jj=1 i=j m

Differentiation provide$§,m) as a convex combination of densities of Betal,, m+1—1¢)
distributions(i = 0,...,m). (See the beginning of Section 6 for explicit expressions.)
Note thatB{™ is the distribution function of a probability distribution @fi, 1) (with
a density) and that, hencg™ = (B(m)) o ¥ is such that its derivativé = f{™
is a genuine probability density function: it is nonnegative everywhere and integrates
up to one. In practice, computationsbﬁf) and off,ﬁm) are performed via numerical
differentiation of B{™ and of F\™. (In Albers (2003, Chapter 4) results can be found
about the asymptotic distribution d)ﬁm) and f,(bm) if m = n; for other values ofn,
suggestions are made.)

Though we are primarily interested in usifig™

£ = || £ =l = |pS™ = 1],

as test statistic (and with. = [n'/3|)), some other test statistics could be discussed as
well, e. g that based on the Kolmogorov distance with outcome

= [[F{™ = ¥l = [IBY™ — Il

whereI(p) = p (see the end of Section 3 for an elaboration in the ease 1). Note that

~5Lm) is an analogue of the test statistic of Kolmogorov's test (see Section 7). The quick
reader is invited to continue with Section 5. The Sections 3 and 4 are about the special
casesn = 1 andm = 2. Although of limited practical interest, they do provide a useful

basis for interpretations, both fet = 1, 2 as for largem.

with outcome

3 Thecasen =1

Ignoring the degenerate case= 0 where the smoothing is so strong tfﬁio)(p) =p
and, hencefﬁo) equalsy and does not depend on the data, we start with: 1 where
B (p) = (1 —a)p® + a(2p — p*)

is a convex combination of the quantile functizm— p? of the Betd1, 1/2) distribution
and the quantile functiop? of the Betd1/2,1) distribution. (Note that this does not
imply that the invers&) of BS" is a convex combination of Beta distributions.) For
@ = 1/2 the uniform distribution appears.

Theoretical intermezzo. It is of some theoretical interest to consider the quantile
functions By(p) = (1 — 0)p? + 0(2p — p?) for arbitraryd € [0,1]. Here BV (p)
corresponds td®y(p) if 6 = u. An elementary analysis provides

(29 SO (20— D) if0>1/2
Go(u) = if 6 =1/2
(1—29 04+ +/0%+(1—-20)u) if 0 <1/2
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with density

go(u) = = 0<u<1)

2/ + (1-20)u

(for & = 0 the distribution function of Betd, 1/2) is obtained, for§ = 1 that of
Beta1/2,1)). It is possible to extend this familygy|0 € [0,1]} of densities by al-
lowing arbitraryd € R. This extension, however, serves no practical purpose because we
are interested in the testing of)Hg = 1 and, hence, in obtaining good power properties
for densities ‘not too far frong, ;. If Xy is a random variable with density functigag,

then (for arbitrary) € R) E X, = fol uge(u) du = 36 + 1. In a parametric approach to

the testing of i : g = 1, the attention might be concentrated on lexeksts which are
‘optimal’ if g belongs to the parametric familfyy|6 € ©} of densities just considered.
The locally most powerful unbiased sizetest rejects ki: 6 = % if u is sufficiently far

from % The most stringent size-test may be obtained by rejecting for large values of
[T, (90(u;) + g1—6(u;)) with 6 chosen such that the shortcoming is maximum. This
will correspond to the most stringent somewhere most powerful unbiased: $es-
Elaborations are not presented because, just like the tests studied at the end of Section
1 (for exponential subalternatives), these ‘optimal’ tests (for alternatives of thegigrm

will fail to be unbiased sizer for testing Hy: ¢ = 1 against the omnibus alternative A:

g # 1. Alternativesy exist (beyond the one-parameter subalternatives), where the power
is substantially smaller than the nominal level of significandgve return to this at the

end of Section 8).End of intermezzo)

In Section 2 the test statisti@d™ and7™ were defined. Fom = 1 we have

0 = |p%) — 1),
1
—[20-1 [ |1~ 20| dp
0
= |u— =
and
th = sup’Bff)(p) —p'
P
= sup [2u — 1|p(1 — p)
p

ja—

N
N[

Conclusion. If one choosesn = 1, then both7\™ and 7™ lead to using the
deviation ofz from 1/2 as test statistic. The corresponding P-value is, approximately,
given byP(x? < 12(z — 1)?) = 20(—V/12n|u — 1|). This test corresponds to that of
Neyman (1937) if a polynomial of degree 1 is used. A drawback is that the test is not
unbiased sizex for testing Hy: f = v against the omnibus alternative A~ 1.
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4 The casen =2

The exact equivalence with a Neyman smooth test vanishes=if 2 because then we
have that

3p(L—p) D (n—i+p2i—n—1)uy

5) =
= p+3p(l—p)e+3p(l —p)(p—3)0

wheres = @ — % is based on the sample measand

1 n n
6:n(n71);;|ui_u-jl_%

is based on Gini’'s mean difference

B@(p) = p* +

n

1 n n 2 .
WZZhﬁi_uﬂ = mZ(QZ—TZ—l)U[i].

i=1j=1 i=1

Note that both the sample mearand Gini’'s mean difference afé-statistics as well as
L-statistics. We introducedlandd because, underfl

ev ()= () [ 2])

with 02 = 1/12 and7? = 1/45, we exactly hav&/ar (¢) = n~'o? andCov (g,6) = 0
(Nair, 1936). Locke and Spurrier (1978) suggests that insteacaofd g other statistics
(e.9. > (u; — 3)%/n, and— 3" log(u;(1 — w;))) could equally well be used to provide
goodness-of-fit tests for uniformity. See Section 8 for further discussion (and note that
the examples just considered are of the same form as those already considered at the end
of Section 1, namely with(u) = (u— 1)? andh(u) = log(u— %) —log u, respectively).

It follows from the limit theorem just established that, undegr H

L n (12e? +450%) — X3 = Gamma(1, ),

and that, hence, using any positive multiplel@£? + 4562 as test statistic, the approxi-
mate P-value

P = P(x2 > n(1262 + 456%)) = exp(—n(3<> + 11.256%))

is obtained. We, however, prefer an ‘exact’ approach based on the test sEfstdth
outcome

1
t@ = ]pP — 1|, :3/ |—36p + (36 — 2e)p + (¢ — L4)| dp
0

In practices andé are known, and the numerical computation of this integral is straight-

forward. Deriving distributional properties dﬁz) for givene andJd is straightforward
as well.
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o = 10%
n m
2 3 4 5 6 7 8 9 10
10 | .227 .278 .314 .344 371 .397 .421 .443 .466
20| .161 .196 .221 .240 .258 .272 .286 .299 .311
50| .102 .123 .138 .151 .161 .170 .178 .185 .191
100| .072 .087 .098 .106 .113 .119 .125 .130 .135
a=5%
n m
2 3 4 5 6 7 8 9 10
10| .269 .328 .368 .401 .427 .456 .479 501 .525
20| .191 .231 .260 .281 .300 .315 .329 .342 .355
50| .121 .146 .164 .177 .188 .197 .205 .213 .220
100 | .085 .103 .115 .125 .132 .139 .145 .150 .155
a=1%
n m
2 3 4 5 6 7 8 9 10
10| .347 .423 473 512 548 575 .600 .624 .643
20| .249 302 .338 .364 .387 .405 .418 .433 .445
50| .158 .191 .212 .231 .242 254 .263 .268 .278
100 | .112 .134 150 .162 .170 .178 .184 .191 .196

Table 5.1Some critical values fom = 2, ..., 10. For a more extensive table, Setp://-
mcs.open.ac.uk/cja235

The exact distribution of\*), underH, has been studied using simulation experi-
ments. Table 5.1 provides critical valuééfa, for o = .10, .05, and.01.

Conclusion. With respect to the example of Section 1 we have .141, § = —.038.
The y2-test discussed in this section provides the approximate P-\@ﬂe: .023.
Using (an extension of) Table 5.1, it follows frofrﬁ) = .212 thatP, = .029.

5 The general case

The results of the previous two sections can be generalized to arbitragy n. In
Section 4 exact representations were given in terms of the sample mean and Gini’s mean
difference. Forn > 3 theoretical results can still be derived but they are too complicated
to be of interest. In practice, the numerical computation®f = ||£™ — v[|; =
||b£{") — 1||; and obtaining distributional properties ™, for a given sample, are
straightforward. To test i f = 4, one can use the simulation-based critical values
reported in Table 5.1. (We recommend the choice- [n'/3].)

The figures in Table 5.1 were obtained as follows. Given some choice), a
sample of sizey was drawn from the standard uniform distribution providing an outcome
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,({"‘) of the test statistiT,Sm). This process was repeated 100 000 times. Percentiles taken
from the empirical distribution o™ were reported.

6 Relation with Neyman’s smooth tests

As indicated at the end of Section 2, the quantile density estibigte = (BSZ”))’ is

a positive polynomial function on0, 1]; it is a convexcombination of the densities of
Betdai+ 1, m+1—1) distributions(i = 0, ..., m). This representation is very fortunate,
because it implies that thig™ and, hence, the density estimagég‘) and fr(]”) are
genuine probability densities. Note that the weight of the dersity+ 1)("7")p*(1 —
p)™~ 1 of Betai + 1, m + 1 — i) can be obtained by elaborating on

—1
n
D S I

1<ai<...<am<n

or, equivalently, by differentiatin@,ﬂm) (p). The first approach provides the weight

-1
n
<m> > (e — U

1< <..<am<n

which, obviously, is positive. It is a matter of elementary combinatorics to write

n+l—m-+i
h—1\/n+1-h
S = S (),

1< <..<am<n h=i+1

and to establish that the weights thus obtained correspond to those obtained by differen-
tiating B{™ (p).

The mathematician might discuss an alternative basis of the linear space of functions
on [0,1], e.g. that of orthogonal (ordinary, or trigonometric) polynomials. This can be
done with respect to the estimationiobut is of particular interest if we are discussing
the estimation of the density= G’ of U; = ¥(X;) (WithG = Fo ¥~ = B~1),

Let gy = 1,1, @2, . . . be any system of linearly independent functions/efo, 1].

(Note thatL,[0, 1] C L1]0,1]. We do not regard it as a severe restriction if the density
g to be estimated is supposed to belif|0, 1].) The Gram-Schmidt orthogonalization
process provides the orthonormal bagis:, ¢, . . . of (a subspace of;[0, 1]. Note
that

Yo = o =1,

Yry1 = (%ﬂ Z (%Ll’wl )/‘

=0

© 907"+1a1/1l)¢z
T 0 DN

i=

)

2

(r=1,2,...,). Ifafunctionh € L,[0,1] (a quantile density or a probability density)
can be written as a linear combinationf, . . . ¢ then it can equally well be written as
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a linear combination ofy, . . ., 1. A useful orthonormal basis is that of the normalized
shifted Legendre polynomials

o () — (1)%/@; (k> ( : k><u>k, P01,

which is obtained by applying the Gram-Schmidt procesetéu) = u", (h =
0,1,...). We elaborate on two lines of thought.

(1) Focussing on the quantile densities, and starting from the estbﬁ?ﬁewe
can considetp,(p) = p" (h = 0,1,...) and determine the weights,, ;, such that
pim) (p) = 3" w, np". The deviations from the ‘ideal’ weights, o = 1, w1 = ... =
0, correspondingto i b =1, are

(20 —1)=2¢,  2(1—27) =4e
in casem = 1 (see Section 3),
3(e — 390), —6e + 34, —94

in casem = 2 (see Section 4), etc. They can be used as the basigptast (see the title
of Pearson’s original paper). It is obvious, however, that in practice more weight should
be attached to earlier standardized deviations than to later ones. This is done in a (more or
less) ‘natural’ way if we us@\™ as test statistic. (Motivation is primarily mathematical;
the discussion in Section 4 shows that the weight assigned to the first squared standard
deviation is much, perhaps too much, larger than that assigned to the second.)

(2) Focussing on probability densities i (0,1), Neyman (1937) provides a
general approach to the problem of testing: Hf = 1 on the basis of the outcome
u1, ..., u, Of an independent random sample, . .., U, from a distribution with den-
sity g. The structure ofL»(0,1) was used by choosing a numberand some sys-
tempg = 1,¢1,..., ¢, of linearly independent functions aif, 1) or, preferably,the
system)y, . .., obtained fromyy, ..., ¢ Vvia orthonormalization. Assuming that
g € L2(0,1), one can think about the projectidr- Z§:1(9> ;) of g on thek + 1
dimensional subspace spanned ¢y, ..., ¢, or, equivalently, by, ..., 1¥,. Here
the inner-products (Fourier-coefficient§), ¢);) correspond to the expectatiofis =
E ¢;(U;) = [;(u)g(u) du which can nicely be estimated by using the sample means
; = n~' 27, 4;(u;), providing the estimatg = 1 + Z§:1 6,1; of the true density
g- Inthis Ly-approach it is convenient to usélg — 1|3, i.e.

k k

n 2
DI SRS ot

j=1 j=1

as test statistic because its distribution undgiistapproximately that ofZ. (Note that
Eoy;(U) = (¢4,1) = 0, etc.) This suggests to use the P-value

k n 2
P(xi>n" Z <Z %‘(W))
j=1 \i=1
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as degree of belief in {4 The choice

po=L o1 = Ipopotp)s P2 = Lpotprpotpitpe)r o0 Pk = L—pp]

provides Karl Pearson’s P-value

wheren; is the number of observations in cgl(j =0, ..., k).

Many authors have discussed the choice of the nuibi€arl Pearson himself stated
‘Thus, if we take a very great number of groups our test becomes illusory. We must
confine our attention in calculating P to a finite number of groups, and this is undoubt-
edly what happens in actual statistics. The nunibef degrees of freedom will rarely
exceed 30, often not greater than 12’, (see Pearson, 1900). Later generations of statis-
ticians, dealing with Neyman’s smooth tests, have made other recommendations about
k. Kallenberg et al. (1985) states with respect to Pearson’s test: ‘In a classical paper
by Mann and Wald (1942), a rule is given to fetincrease withn roughly at the rate
n?/5 when using intervals with equal probability undey.HWore recent numerical work,
however, has shown that for particular alternatives, a small fixed valkeofiEn gives
much better power (cf. Best and Rayner, 1981)". Regarding the choice of the number of
components in Neyman'’s test, Rayner and Best (1989) states that 4 will usually
suffice’. (See Inglot et al. (1990, 1994), Kallenberg et al. (1985) for extensive analyses
in this respect.)

All x? tests considered have in common thatthenderlying test statistics (in Sec-
tion 4 the sample mean and Gini’'s mean difference) are used as the basis of the consid-
eration: all other possibilities are ignored. With respect to Neyman’s smooth test this
implies that thefirst basis vectorspy, . . ., @i (or, equivalentlyy, ..., vy) are incor-
porated and, hence, an intuitive idea exists that the earlier basis vectors (lower degree
polynomials) are more important than later ones. This suggests that it may be advanta-
geous to replace the unweighted combination ofithstatistics{n /2 3", z/)j(u,»)}2
by a weighted sum providing the P-value

k n 2
P ’LU1212++U)]€Z]%ZZ'IU] {n_l/2z¢j(ui)}
i=1

Jj=1

whereZ%, ..., Z? are independent? variables. With respect to an idealized context,
the choicew; = j~1/%is discussed in Schaafsma and Steerneman (1981) as one of the
possibilities to obtain a substantial improvement of power properties in the subalternative
defined byd? > 62 > ... > 67 whered; = (1, g). It follows from Section 4 that using

Tém) as test statistic is in line with this idea of using decreasing weights. (The fact that

7{™ is anL;-norm difference whereasi|§ — 1|2 is an L,-norm difference is of minor
interest.)

Remark. The estimatg of the unknown true density is usually not a probability
density itself: it is true thafo1 g(u) du = 1 but usually not true thaj(u) > 0 (0 < u <
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1). There are many ways to adapsuch that a probability density is obtained. Using
approach(1) is one of the possibilities. Another one is the maximum-entropy approach
described in Jaynes (2003): suppose we have estinéyat:es"r1 o v (u;) of the ex-
pectations); = (v, g) and are interested in the true dengityf U; (i = 1,...,n). Our
estimatey of ¢ ‘should’ satisfy the restrictionfo1 Vi (w)g(u) du = 0;, (j =1,...,k)

and be such that the (Shannon) entropy

- / () log(g (1) )du

is maximum. The solution to this optimalization problem is, somewhat surprisingly, that
g = g Where

go(u) = exp (0191 (u) + ... + Optbp(u) — ¢(0))

defines an exponential family arfdis the maximum likelihood estimate ¢f If one
imposes the model that € {gg; 6 € R} and tests kg § = 0, versus A:0 # 0, by
applying the Wilks-Wald asymptotics to the Neyman-Pearson likelihood-ratio principle,
then one arrives at the? test based on||f||2 described.

7 Relations with other goodness of fit tests

We are fascinated by the total-variation (or) distancel|f — «||; and the Kolmogorov
distance||F — ¥||. The underlying motivation is largely mathematical: the total-
variation distance is invariant under bijective mappings while the Kolmogorov distance
is invariant under monotonous transformations. Under certain additional assumptions we
have that|f — ¢||1 = 2||F — ¥||«. We always havé|f — || < 2||F — V|| (see,

e.g., Lave, 1955). Both distances are such that they do not change if distribution func-
tionsG = F o ¥ ! are replaced by corresponding quantile functions. The test statistic
7™ = ||F\™ — ¥||., is obtained by replacing the unknown true quantile functibn

in [|F — ¥||oc = || B — 1||s by the corresponding estimaf," which is a continuous

and increasing analogue of the empirical quantile function. Kolmogorov's test (1933) is
based on|B — 1||» Where B is the empirical quantile function. As the true quantile
function is smooth, the estimaté,™ will be closer to the truth, on the average, than
the discontinuous function8 on which they are based. That is why it is reasonable to
expect that the power properties of the tests basa@iféf’ — v||; and||F{™ — ¥||o

are somewhat better than those based on Kolmogorov's test. Much will depend, however,
on the alternative hypotheses to be considered and on the choicéodbe made.

A delicate issue is as follows. If one accepts that the context asks for a test statistic
of the form||f ¥||; then the question arises which nonparametric density estifnate
one should use. In De Bruin et al. (1999) it was made very clear that the estifpator
fﬁ") studied there is ‘not unreasonable though some further improvement is possible’.
Such improvement can be achieved by usﬁiﬁ” instead off,,, or by using a kernel
estimatork,,, preferably with the bandwidth determined such that the method is optimal
for estimatingy itself (note that) is given). The comparison between the tests based on
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the specific statistit| £ — ||, with m = [n!/3| recommended, antk,, — || will
depend on a large number of specifications with respekt, t@.g. of the basic kernel
and its bandwidth. The comparison will also depend on the alternative hypotheses for
which power comparisons are made, etc. Arguments in favai.df = [|£\™ — y||,
@@ndT{™ = ||F{™ — ¥||..) include thathe distribution of the test statistic undepH
does not depend on. Critical values of the distribution dﬂﬁm) can be found in Table
5.1. (f,&m) has not yet been considered.) For the test statigigs— «||; additional
simulation studies would be needed for dnyand of interest.
Conclusion. A plethora of methods exists to tesgHf = . One class of methods
is that of 7 tests. These tests have in common that they are bask¢teniations from
the probable’ (see the title of Pearson, 1900). These deviatjong:; have their origin
in test statistics; with expectationg:; under Hy. If theseT; constitute a ‘correlated
system’ (see, again, the title of Pearson, 1900), as is the case in general, then they can be
combined by usingT — u)’>~1(T — i) as omnibus statistic. Hee is the covariance
matrix of 7 under H and the (asymptotic) distribution undep ti that of 3. Even
for fixed valuek, manyy? tests exist because the attention can be restricted to different
(k + 1) dimensional subspaces 6£([0, 1]) (see Section 6 and note that the tests
corresponding to different basésy, ¢1, . . ., ¢x) of such(k + 1)-dimensional subspace
are not equivalent). Section 4 shows tRattests may also appear in a different manner.
Other tests have their origin in the mathematical argument|tfiat ||,, or || F —
U|| o0, OF f(F — U)2 d¥, etc., ‘should’ be chosen as test statistic. Note that- ||,
is invariant under bimeasurable bijections and that — ||, and [(F — )2 d¥

(= fOI(G(u) — u)? du) are invariant under monotonous transformations.

The practical statistician has to choose one specific testing method from this plethora.
Followers of the Neyman-Pearson theory will argue that the choice of test statistic should
depend on the alternatives fowhich have to be taken into account. At the beginning
of Section 1 we deliberately did not specify any alternative because we hoped that a test
statistic|| £™ — ||, with specific value ofn, e.g.m = |n!/3], is ‘universally rec-
ommendable’ if H: f = 1 has to be tested in the case of sufficient smoothness and
regularity of f and+. We shall see in Section 8 that such ‘universally recommendable’
test does not exist. For alternatives with densgitafter the probability transform) sym-
metric aroundl /2, our test is less ‘usually’ powerful than Neyman’s smooth test based
ony(u) = uP (h = 0,...,k). Our test, however, has very good power properties if
Ho: f = v has to be tested against alternatives wigdsea monotonous function ef or,
equivalently, where the likelihood ratify/+) is monotonous. This conclusion, however,
affects the idea thaf\™ with m = ¢/n is ‘universally recommendable’. Other test
statistics of the form| £ — ||, or [(F — ¥)2d¥, etc., either withE” = F{™ or with
F' the empirical distribution function, will also not be ‘universally recommendable’.

8 Power Comparisons

In Miller and Quesenberry (1979) and Inglot et al. (1994), power properties were deter-
mined fory? tests in order to study the choice lothat is most appropriate. It is in this
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/

Figure 8.1 Top row, from left to rightg:, g2 andgs. Bottom row, from left to righy4, g5 and
ge- All horizontal axes go from 0 to 1, the vertical axes from 0 to 2

respect that the attention is concentrated on the alternatives

o qi(u)=1/(2V/u)

o ga(u)=2—4ju—1/2

o gs(u)=(1/Vu+1/vVI-u)/4
o gi(u) =4ju—1/2]

discussed in Miller and Quesenberry (1979) and the alternatives
e g5=2/v/9—38u, whichisgywith# =2, and
e gs=¢/(e—1), whichisgs withf =1,

which appeared in the theoretical intermezzo of Section 3 (and at the end of Section 1)
(see Figure 8.1). Note that andgs are not inL,(0,1). Powers for various choices of
k andm and various sample sizes are reported in Table 8.1. As Neyman’s téstfdr
(andpg = 1,1 (u) = u) is in exact agreement with our test for = 1 (see Section
3), the differences between the columns unkdex 1 and underm = 1 are caused
by randomization and approximation errors, respectively. The column underl is
obtained as follows. For theonotonouslternativesy, g5, andgs we computed the
noncentrality parametets as in Section 1 providing; = 3=1/2n/2, §5 = 12-1/2p1/2
andés = |(e —1)~! — 1|12/2p1/2 = 0811/2n1/2 for the test based dm — 1| (see the
end of Section 1 and Section 3). From thésethe powers undemn = 1 were obtained
by using the formulab(—1.960 + ¢).

The results foly, g5 andgg reported in Table 8.1 are in line with what one should
expect: the alternativeg andgs were chosen (see Section 3) such that it is ‘optimal’ to
choosek = m = 1. For increasing:, Neyman'’s test looses power faster than our test
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altern. n Neyman Usingt(™
k=1 2 3 4| m=1 2 3 4 5 6 7 8

g1 10 47 51 52 53 57 49 50 49 48 47 47 48
20 74 77 78 78 73 73 74 74 74 74 74 T3

50 98 99 99 99 98 98 98 98 98 98 99 99

g2 10 0 21 11 11 1 1 1 2 4 8 11 13
20 0 62 48 39 1 1 2 8 16 26 37 4Q

50 0 99 97 95 1 0 19 57 77 86 91 93

g3 10 10 30 30 35 10 11 12 13 13 14 16 19
20 10 45 44 52 10 11 12 13 14 18 21 24

50 10 79 76 84 10 12 14 19 30 39 49 5%

g4 10 11 26 23 19 11 12 13 15 16 17 21 2%
20 11 63 58 59 11 12 13 16 18 23 31 38

50 11 96 94 96 11 11 15 25 44 59 70 78

gs 10 15 13 13 12 15 16 16 16 16 16 15 1%
20 25 21 19 18 25 26 26 26 26 25 25 25

50 54 47 43 39 53 56 56 56 56 55 55 55

[ 10 14 10 9 9 14 15 15 15 15 15 14 14
20 24 18 15 14 25 25 25 25 25 25 24 24

50 52 42 36 54 52 54 53 53 53 52 52 52

Table 8.1Rejection percentages (at= 5%) for Neyman’s smooth tests (with; (u) = u7,
j =0,...,k)with & = 1,...,4 and the tests based off™) with m = 1,...,6. The

Neyman data fop, . . .

, g4 are obtained from Miller and Quesenberry (1979). The numbers

in columnm = 1 are obtained using the method described in Section 8. All other percentages
are based 0000 Monte Carlo-replications. The correspondence between colémasl and
m = 1 suggests that the simulations and the asymptotic results are sufficiently reliable (except
for the result forg; andm = 10 where the asymptotics is unreliable).)
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does for increasing:. The reason is obvious: our test stays closer to the test studied in
Section 3 (see Section 4). The alternativeis such that Neyman'’s test is a bit better
because it is faster in picking up additional information.

For thesymmetricalternativesy,, g3 andg, we computed the variances of (U —
1)n!/2 and compared these with the variange= 12~ under H,. The powers in the
column undenn = 1 are next computed by using the form@&(—1.9600y/c). For
g2 we haves? = 247! and, hence2®(—1.960v/2) = .006. For g3 and g, we have
0% = 7/60 ando? = 8~! with corresponding powers approximate()p8 and.110,
respectively.

The results forys, g3, andg, reported in Table 8.1 are in line with what one should
expect: the lack of dispersion gf, compared with the uniform density, has the effect
that the power is less thaits if the choicek = m = 1 is made. This shows that
the test based ofu — 3| is not unbiased sizer. Fork = m > 2, Neyman'’s test is
preferable for these symmetric alternatives because our test puts relatively more weight
on the deviationjz — 3|. It is not true, however, that, e.g., Neyman’s test for= 2
is unbiased size-. To establish this, we considered the case wiieteas the discrete
distribution 31, , /15 + 511/541/,73- We do not suggest that our test is unbiased
size«.

9 General conclusions

The problem of testing K f = ¢ against A:f £ ¢, or A:||f — ||1 > 0, is too ‘ill-
posed’ to be settled satisfactorily. Classiggltests like those of Pearson or of Neyman
(and those studied in Section 4) are asymptotically of aizbut they are not ‘optimal’
in an overall sense.

The choice of the number of degrees of freedbrim thesey? tests is difficult to
make. In Section 1 we cited Kallenberg et al. (1985) which claims that a small fixed
choice of the number of cells inyg test gives best power. Rayner and Best (1989) made
a similar statement. Ledwina (1994) stated that ‘recommendations in statistical literature
are sometimes confusing’. Schaafsma and Steerneman (1981) considered an idealized
context where ‘decreasing weights’ are assigned tohistributed components of?.
Recent papers (Ledwina, 1994, Inglot and Ledwina, 1996, Kallenberg and Ledwina,
1995, Inglot et al., 1994) on Neyman'’s test prescribe the use of data-driven methods,
where the choice 0f depends on the data set. One of the suggestions is to use Schwarz’s
Bayesian Information Criterion to choose the dimension for the appropriate exponential
model for the data, and to use this dimensior.as

Fascinated by the mathematical formulation | — «||; > 0 of the alternative
hypothesis we started our investigations in the hope that a satisfactory compromise would
be achieved by rejectingdfor sufficiently large outcomes of

£ = |11 = 9|y

and a specific choice of, e.g. m = |n'/3]. The power computations in Section 8
indicate that (1) the choice of is much less crucial than the choicefoin y? tests, (2)
form = k > 2 the x3 test is definitely preferable if alternativgs=# ¢ are considered
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193 195 205 213 219 224 241 245 246 247 248 250 252
252 253 254 256 257 258 265 266 267 267 268 269 269
270 270 272 272 276 276 276 280 280 283 283 284 285
288 289 290 291 293 297 299 299 300 305 318 335 347

Table 10.1Azimuth measurements by Bom (1978)

such that the corresponding density is symmetric arcgJad is the case withy, g3, and

g4 in Table 8.1, (3) for alternative$with f/g monotonously increasing or monotonously
decreasing (seei, g5, and gg in Table 8.1) rejecting Kl for large outcomes oiﬁlm)
with m = |n'/?| seems to provide the ‘satisfactory comprimise’ we are looking for.
However, Table 8.1 suggests that a data-dependent approach for findimght yield a
more satisfactory compromise.

Conclusion. Testing Hy: f = 1 versus A:f # 1 is a Pandora’s box. Consensus
about a testing method cannot easily be attained. Note that in the approach of Section 6
a specific choice of basis functiogs, . . ., ¢y is needed. Our test, witlh = |n!/3],
provides a ‘very reasonable’ approach if hias to be tested against the subalternative
of A defined by monotonicity of /v). We suggest that it is also a reasonable approach if
Ho has to be tested against the wider subalternatiVelefined by stochastic inequality,

i.e. by FF > . If the alternatives of interest are different, e.g. becalideas been
adapted to location/scale characteristics of the sample, then one should not proceed with
our test (at least not with the choiee = |n!/3] indicated). It will then be difficult to
compromise between the plethora of tests available.

10 An example from archaeology

Starting with Van Giffen (1925, 1926), many scientists made statements about the prefer-
ence direction of Dutch passage mounds or, more precisely, the chamber in the interior of
such dolmen. An east-west preference direction was documented. Various definitions of
the main direction of (the chamber of) passage mounds are proposed and corresponding
‘azimuth measurements’ are reported in literature. The azimuth of an (undirected) line
segment is obtained by measuring the number of degrees, from south via west and north,
to provide a value betweer80° and360°. In some protocols it was mentioned that the
actual azimuth measurement reported is the average of two azimuth measurements, one
derived from the eastern end of the mound and one from the western end.

Table 10.1 reports = 52 ordered azimuth measurements, collected by Bom (1978).
We regard these values,), . . . , 2[5 as the outcomes of the order statistics correspond-
ing to an independent random sample from a distribution with derfsap [180, 360]
(such thatlim, 150 f(x) = lim, ~360 f(x); we shall ignore this additional informa-
tion). We shall test the null hypothesis

HY . f(z) = &, 180 <z < 360,
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Test " [ 7?
T 2| 40
Ty 0| 29
Neyman g = 3) 0 8
Neyman g = 4) 0 3
Y2 (k =3) 0| 14
Y2 (k= 4) 0 2

Table 10.2P-values (in %) for the testing cbi(()l_)orHéZ) on the basis of the data in Table 10.1.
The Neyman tests are applied wit) (u) = w’, j = 0,...,k, andk = 3 and 4. Pearson’s
X2-test results are based ¢k + 1) = 4 and 5 equiprobable classes

of uniformly distributed azimuth values, as well as the null hypothesis
HY : fle) =& (1— L]z —270]), 180 <z < 360,

that f is the density of the meah(X; + X,) of two independent random variables,
both uniformly distributed oifil80, 360]. The motivation for formulating 6—?) originates
from the remark that azimuth values were sometimes obtained by taking the average of
two values, one from the eastern end and one from the western end. (The testing of
Hgf) should be regarded as a mathematical exercise rather than as something of genuine
archaeological interest.)

Table 10.2 provides results in the form of P-values. Our test is used withmbet8
andm = 4 becaus8 < /52 ~ 3.73 < 4. We compared this with other tests discussed
in this paper. All tests considered vaél) have P-values belo@%. Neyman'’s test (with
k = 4) and Pearson’s? test (with 5 equiprobable classes and, thus; 4 degrees of
freedom) rejechf) ata = 5%. The other tests considered, do not reject this hypothesis,
and our test (both witln = 3 asm = 4) has considerably larger P-values than the other
ones. This illustrates the conclusion of Section 9.
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