Introduction
C.J. Albers & W. Schaafsma, Goodness Of Fit Testing Using A Specific Density Estimate, Statistics & Decisions (2008)

In above publication, the authors introduce a new goodness-of-fit test. For some choices of m, n and α, critical values are provided in the manuscript. On this website, critical values for more choices of m, n and α are given. The table below is a small subset of the additional values available (for α=5%), for values for a specific choice n, please use the form below.

Find critical values for a range of sample sizes indicated
Please provide the minimum and maximum sample size for which you want to obtain critical values. Keep in mind that 5 ≤ minmax ≤ 1000; and for larger sample sizes, not all values are computed and interpolation of surrounding values is necessary.

Minimum value of n
Maximum value of n

Suggested choices of m via m = ⌊n1/3
nmnmnm
1 - 71343 - 51172197 - 274313
8 - 262512 - 72882744 - 337414
27 - 633729 - 99993375 - 409515
64 - 12441000 - 1330104096 - 491216
125 - 21551331 - 1727114913 - 583117
216 - 34261728 - 2196125832 - 685818

Some critical values for α = 5%
 m=2m=3m=4m=5m=7m=10
n = 50.3790.4650.5280.582//
n = 100.2690.3280.3680.4010.4560.525
n = 150.2180.2650.30.3250.3680.413
n = 200.1910.2310.260.2810.3150.355
n = 250.170.2060.2310.2510.2810.315
n = 300.1560.1890.2110.230.2560.286
n = 400.1350.1630.1830.1980.2210.247
n = 500.1210.1460.1640.1770.1970.22
n = 600.110.1330.1490.1610.180.2
n = 700.1010.1240.1390.1490.1670.184
n = 800.0950.1150.1290.140.1560.173
n = 900.0890.1090.1220.1310.1460.162
n = 1000.0850.1030.1150.1250.1390.155
n = 2000.060.0730.0820.0890.0990.108
n = 3000.0490.0590.0670.0720.080.089
n = 4000.0430.0520.0580.0620.0690.077
n = 5000.0380.0460.0510.0560.0620.069
n = 7500.0310.0380.0420.0460.0510.056
n = 10000.0270.0330.0370.040.0440.049